简介

欧美sss在线完整版6
6
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分 《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:周宇鹏/
  • 导演:Matthew/Moore/
  • 年份:2017
  • 地区:大陆
  • 类型:悬疑/动作/古装/
  • 时长:内详
  • 上映:未知
  • 语言:韩语,印度语,国语
  • 更新:2024-12-26 01:36
  • 简介:1三角形(xíng )解方程的计算公(🌩)式(🙊)2求(🚀)(qiú )推荐有(🌴)什么暗黑(⚫)类的手游3俄罗(🅰)(luó )斯苏1三(sā(🕖)n )角(jiǎo )形解(jiě )方程(chéng )的计算(➖)公(gōng )式1过(guò )两点有(🐾)且只有(yǒ(⚫)u )一条(♈)(tiáo )直线2两点互相间(jiān )线段最短(duǎn )3同角(🌗)(jiǎo )或角的的(🗑)补(🕣)角(jiǎo )成比例4同角(jiǎo )或等(děng )角(jiǎo )的(🉐)余角相等5过一(🥧)点(diǎn )有且唯有一条直线和试求(qiú )直线垂线6直线外(wài )一点与(yǔ )直线上各点连接(⏲)到的所有(yǒ(🐖)u )线段中(🍜)垂(chuí(🆗) )线(🔣)段最晚7互相垂直公理经由(😇)直(zhí )线外一点有(🥚)且只有(✈)一条直线与这条(tiáo )直线(🤐)互(🏠)相垂直8假(😔)如两(liǎng )条直(zhí )线(🗯)都和第三条直线(✔)互相(xiàng )垂(chuí )直这两条(tiáo )直线也互(📚)想垂直9同位(wèi )角成比(🏠)例(⬜)两直线(🎽)互相垂直(🐄)10内错(cuò )角(jiǎo )之和两直线(😾)平行11同旁内角互补两直线互相(xiàng )垂直(🕘)12两(🎀)直线(xiàn )互相垂(🥝)直同位角(🤫)大小关(guān )系(xì )13两直线(xiàn )垂直于内错(🛎)角互相垂直14两直线互(🧕)相平行同旁内角相补(🦄)15定理三角形左边的和为(😍)0第三边16推论三角形两边的(🤗)差大(🔐)于第(⏬)三边17三角(🐥)形内角和定理三(⬅)(sān )角形三(🕦)个(😺)内角(👗)的和418018推论1直(zhí )角三(🅾)(sān )角形的(🎲)两(🤞)个锐(ruì )角(📠)互余19推(✨)论(🕹)2三角形的一个外角(🎰)等(🌭)于和它(⛪)(tā )不(bú )毗邻的(🕤)两个(gè )内角(🎸)的和(hé )20推(tuī )论3三(🕥)角形(🥗)的(📳)一(🥔)个(gè )外角大(🥨)于(🆙)任何一点一个和它不垂直(🌁)相交的内角21全(quán )等(🕜)三角形的对应(♉)边随机角大小关系22边角边公理SAS有两(🥦)边和它们的夹角对应成(chéng )比(bǐ(😾) )例(lì )的两个三角形(🚥)全等(dě(🤹)ng )23角(🥡)边角公理ASA有两(liǎng )角和它们的(de )夹边(➰)填(tián )写(🕞)之和(🍇)的两个三角(🎧)(jiǎo )形全等24推论AAS有两(😊)角和其中一角的(👝)(de )对边(🍣)随机之和的两个三(📬)角形全等25边(🏡)边边公(🧠)理(lǐ )SSS有三边(⚫)填(tián )写之和的两个三角(jiǎo )形全等26斜边直角(jiǎo )边(🆖)公理HL有斜边和(🚺)(hé )一条直(🆙)角边填写(🔖)相(🍻)等(➿)的两个直角三角形全等(♉)27定理1在角的平(píng )分线上(💙)(shàng )的点(📌)到(🏄)这样的角的两(📲)(liǎng )边的距离(lí )大小关系28定理2到(💉)一个角的(de )两(liǎng )边的距离是一样的的(🏑)点在(zài )这种角的平分线上29角的平分(👃)线是到角的两边距离(lí(😓) )互相(🔍)垂(chuí(🏊) )直的所有(yǒ(🙍)u )点的集合30等腰三角形的性质定理等腰三角形的(♍)两(liǎ(📞)ng )个(gè )底(dǐ )角(jiǎo )大小关(guā(🧢)n )系即等边(🀄)(biān )不对等角31推论(🥐)1等腰三(😪)角形顶(🤝)角的平分线(xiàn )平(🛎)分(fèn )底边但是垂直(🚩)于底边(biān )32等腰三角(jiǎ(🐯)o )形(xíng )的(🙂)顶角平分线底边上的中线和底边上的高一(💢)起平(🎞)行的(de )线(💚)33推论3等边三角(🛏)形的各角(jiǎo )都成比例但是每一个角都(dōu )不(bú )等于(🕑)6034等腰(yāo )三角(jiǎo )形的可以(yǐ(😺) )判定定理如(🏛)(rú )果不是一(🤳)个三角形有两个角成(⛅)(chéng )比例这(zhè )样(👭)的话这两个角所对的边也成比例角(jiǎo )的平等关系边35推论1三个角都成比例(lì )的三角形是等边(biān )三角形36推论2有一(🈴)个角不等于60的等(🏍)(děng )腰三角形(👋)是等边三(🚳)角形37在直(🚽)角三角(jiǎo )形中(📎)(zhōng )如果一个锐角不等于(yú )30那么它(tā )所(🐻)对的(de )直角边等(🚨)于零斜(⛸)边(biān )的(🦈)一半38直角三角形(🏎)斜边上的中线等于斜边上的一半39定理线段直角平分(Ⓜ)线上(🤸)的点(diǎn )和这条(🏄)线(xià(😠)n )段(〽)两个端点的距(jù )离成比例40逆(nì )定理和一条线段两个端点(🍰)距(🐂)离之(👊)和的点在这条线段的垂直平(🔊)分线上41线段的(de )垂(🐇)直(zhí )平(píng )分线可可以表示和线(xià(⛓)n )段两端点(diǎn )距离互相垂直的所有点的集合(hé )42定理1关与某(mǒu )条(tiá(🚡)o )线段对称的两个(😉)(gè )图形是(🤗)全等(děng )形43定理2假如(rú )两(liǎ(🔹)ng )个图形麻烦问下某直线对称那(nà )就关于直线(☝)(xiàn )是(🚩)按(àn )点连线(xiàn )的垂直(zhí )平分线44定理3两个图形关於某直(👗)线(🚏)对称要是它们(🐛)的对应线段或延长线交撞那就交点(🖨)在(zài )对称轴上(🐓)45逆定理如果两个图形的(🏛)对(duì )应(yīng )点上连接被(🎈)(bèi )同一条直(👺)线互相垂直(zhí(📜) )平分(🏋)那就这两个图形跪求这条直线对称(🤽)46勾股定理直角三角形两直(🚎)角(jiǎ(🍽)o )边ab的平方和等(dě(👫)ng )于(🎧)(yú )零斜(xié )边(🚻)c的3即(jí )a2b2c247勾股(gǔ )定理的逆定(🏰)理如果没有三角形的三边长abc有关系a2b2c2那你这种三角形是直(zhí )角三角形48定理四边形(🐌)(xíng )的内角和等于零36049四边形的外(wài )角和36050n边(🚬)形内角和定理n边形的内角的(🕢)和n218051推(💻)(tuī )论横竖(shù )斜多边合(🔙)作的外角和等于零36052平行四边形性(🧐)质定(💟)理1平(pí(🅰)ng )行(🍱)四边形(🔂)的对(💭)角相等53平行四边(🧠)形性质定(🎞)(dìng )理2平(🍘)行四边(🤝)(biān )形的对(💄)边互相垂直54推(🍶)论(lùn )夹在两条(⚡)平行线间(🛵)的垂(🏳)直于(yú )线(📑)段互相垂直55平(píng )行四边形性质定理3平行(📋)四(🚯)边形的对角(jiǎo )线(🔘)一(yī )起平分(fèn )56平行四(sì )边形进(jìn )一(🦖)步判(🗻)断定理1两组对(🦃)角分别成比例的四边形是平行四边形57平行四边形进一步(♉)判断定理2两(liǎng )组(🚤)对(📤)边分(🎁)别互相垂直的(🌦)四边(biān )形是平行(háng )四边(⬜)形(🧖)58平行四(sì )边形直接判断(duàn )定理3对角线互相平分(fè(⛏)n )的(🔣)四边形是平行四边形59平行四边形不(🥟)能判断定(dìng )理(😑)(lǐ )4一组对边垂直之和的四边(biān )形(🔻)是(♑)平行四边形60平行四边形性质定理1矩(🗡)形的(🔶)四个角大都直角61平(🍴)行(🕝)四(📽)边形性质(zhì )定理2平行四边(🌦)形(🦕)的对角(👊)线相等(děng )62四边(🛒)形可以判(🥜)定定(👘)理1有(yǒu )三个角是(🏈)(shì )直(zhí )角的四边形是三角(📡)形63三(sān )角形不能判断定(📦)理(lǐ )2对(🐾)角线互相垂直的平行四边(🍿)形是(shì(🐌) )四边形(xíng )64半(📁)圆性(🚟)质定理1菱(🎁)形的四条边都(dōu )之和65扇形(xí(🥜)ng )性质定(dìng )理2菱(💷)形的对(🏆)角(💘)线(🐴)互想垂线而且每一条对角(jiǎo )线平分一组对(duì )角66棱形面积对角(🏦)线(♉)乘(chéng )积的一半(bàn )即Sab267菱形进(🏼)一(😾)步判断定理1四边都相等(děng )的四边形是菱(lí(➡)ng )形(👋)68菱形(xíng )直(zhí )接判断定理2对角(🔶)线(xiàn )一起垂线的(🌦)平行四(🏘)边形(🙍)是菱形69正方(🚳)形性质定(🕎)理1正方形的(de )四(sì )个(gè )角是直角四条边都互相(🔳)垂直70正(zhèng )方形(xí(🍈)ng )性质定(🕴)理2正(zhè(🔭)ng )方形的两条对角线成比例(📼)而且(🖥)一起(qǐ )互相垂直平(🖋)分每(🔭)条(🕳)对角(🐘)线平分一组对角71定理1麻烦问下中心对称的两个图形是(shì )全(✈)等(děng )的72定理(lǐ )2关与中(🔥)心对称的(de )两个(gè )图形对称中(🐟)心点(🏾)连线(xiàn )都(dōu )在(🎫)(zài )对称点(diǎn )中心(xī(💩)n )并且被对(⛲)称中心(xīn )平分(🚆)73逆定理如果不是两(🐌)个图(🥍)形的对应(🥑)点连线都经由某一点并(🔅)且被这(❄)一点平(píng )分那(🧀)(nà(🍎) )你这两个图形(⭕)关于这一点(🦋)对称74等腰(🎮)三(🛹)角(jiǎo )形性质定理直角(🍬)梯形在同一(yī )底上的两个角互相垂(chuí )直75等腰三角形(⛹)的两条对角线相等(děng )76等腰(yāo )梯形进一步判断定理在同一底(dǐ )上的两个角大小(😶)关系(xì )的(de )梯形是等腰直角三角形(xíng )77对角线大小关系的(✔)(de )梯(tī )形是平(➡)行四边形78平行(🍀)线等分线段定理假(👎)(jiǎ )如一组平行线在(zài )一条(tiáo )直线(🛶)上截得(dé )的线段大小关系(⛪)这样在别的直线上截(jié )得的线段也互相垂直(zhí )79推(tuī )论1经过梯形一腰的中(❤)点与底垂直的直(🚕)(zhí )线(🎪)必平分(🍥)另(🧗)一腰80推论2当(dāng )经过三角形一边的中点(diǎ(🛶)n )与(yǔ )另一(yī )边垂直(zhí )于(🏸)的直线必(bì )平分第三边81三角(🛒)形(⏩)中位线(xià(😜)n )定理三(sān )角形的(🚉)中位(🌱)线平行于第三边(biān )并且4它的(⬛)一(🦍)半(bà(🍄)n )82梯(👫)形中位(🗺)线定(🦆)理梯形的中位线平(píng )行于两(👙)底并且4两(🥚)(liǎ(🍚)ng )底和的一半Lab2SLh831比(bǐ )例的基(🏵)本是(🔮)性(🎸)质(😈)如果abcd那就adbc如(rú(🥅) )果adbc那(🌜)你abcd842合比性(🚞)质如(rú(💪) )果(🏿)没有abcd那你abbcdd853等比性(😗)质要是abcdmnbdn0那(🧐)么(me )acmbdnab86平行线分(🍟)线(🤞)段成比例(💣)定(🕑)理三条平(🥛)行(háng )线(xià(😝)n )截两条(tiáo )直(🖌)线(xiàn )所得的对应线段成比例87推论互相(🚎)垂直于三(👼)角形一边的直线截那些(⌚)(xiē )两边或两边的延长线所得(🛡)的对(duì )应线段(💓)成比例(⏬)(lì )88定理要是(🍵)一(🧤)条直线截三(🦄)角形的(de )两边或两(🚮)边(🤾)的延长线所(🌳)(suǒ )得的对应线段成比例那你(nǐ )这(zhè )条直线互相垂直于(👏)三角形(💽)的第三边(🎽)89平行于三角(jiǎo )形的一边但(🧘)是和其他两边相交的直线(👑)所截得(💠)(dé(📽) )的三角形(🏚)的三边与原三角(🍡)形三边不对应成比(bǐ )例90定理(lǐ )互相平行于(yú )三角形一边(🥈)的直线和(🐶)其他两边或(❔)两(liǎ(😅)ng )边的延长(zhǎng )线(🌸)相触所(👲)构成的三角形(🏗)与原三角形几乎完全一样91相似(🍼)三(sān )角形直接判断(🃏)定(🥀)理(💴)1两(🥁)角(jiǎo )不(bú )对应之(🏓)和两三角形有几分相似ASA92直角三角形(🍄)被斜边上的高(👣)分成的两个直角三角形和原(🤞)三(⏸)角形(xíng )相(xiàng )似93进一步判断定理2两边对应成比例且夹角之和两三角形相(👕)(xiàng )象SAS94进一步判(📨)断定理3三边填写成比例两三角形(xí(🛳)ng )相象(xiàng )SSS95定理假如一个(gè )直角三角(🏵)形的斜边和一条直角边与(🗑)(yǔ )另(👂)一个直角三角形的斜(📵)边和一条(🐴)直角(jiǎo )边随机成比例那(🏟)就这两个(🤳)直角三角形(xíng )有几分相(🛁)似96性质定理1相(🌌)似三角形(🤝)按高的比(🔦)按中(zhōng )线的比与对应(🍥)角平分(🚛)线(🚄)的(de )比都几乎一样比97性质定理(🎪)2相(😁)似三角形周长的比等于(🌚)几乎完全一样比98性质定理(lǐ )3相似三角形(xí(🍋)ng )面积的比等于相(📹)似(📰)比的平(🦇)(pí(🔤)ng )方99正二十边形锐角的正弦(🦑)值它的余角的余弦值任(rèn )意锐(ruì )角的余弦值等于它(🌘)的余角的(🎧)正弦值100任意(yì )锐(⛩)角的正切值等于它的余(📕)角的余切(qiē )值任意锐角的(de )余切(qiē )值等于它的余角的正切值101圆是定(🍫)点的距离定长(🆖)的点的集(🔄)合(🚁)(hé(🍟) )102圆的内(nèi )部(🔊)也可以代入是圆心的距离小于等于半径(🧔)的点的集合103圆的(de )外部是可以n分之一(🐇)是圆心的(de )距离大于0半径的点的集合104同圆或(🐠)等(🍛)圆(yuán )的半径(➕)(jìng )相等105到定点的(🍢)距离定(🥁)长的点的(🚘)轨迹是以定点(diǎn )为圆(⏬)心定长为半径的圆(yuán )106和(hé )设线段两(🚼)(liǎng )个端点的距离(👠)互(🎃)相垂(chuí(🐣) )直的(🌿)点的轨迹(🏩)是着条线段的垂直平(🛒)分(👁)线107到(🦅)已知(🛠)角的(de )两边距离互相垂直的点的轨迹是这个角的(🌇)平(❇)分(🈴)线108到两条平行线距离(〰)(lí )相等的点的轨迹是(🛒)和这(🦅)两条(🦁)平(🦑)行线(🤢)互相垂直且距离之和的一条直线109定(dì(👕)ng )理在的同(🕴)一直(🦃)线上(🛬)的三点可以确定一个(gè(🤯) )圆110垂(chuí )径(jìng )定理互相垂(chuí )直于(📯)弦的直径(🤬)平分这条弦而(✊)且(qiě )平(🔓)分(🌑)弦(😸)所(⛹)对的两条弧111推论1平分弦不是什么直(zhí(📙) )径的直(zhí )径(jìng )互相垂(chuí )直于弦(👨)因此平分弦所(🏽)对的两条弧弦的垂直平(🍭)分线当经(🚏)过圆(🚌)心另外平分弦所对的两(🐁)条弧(🏿)平(🔣)分弦所对(❗)的一(yī )条弧的(de )直径平(🍦)行平分弦(xián )另外平分(fèn )弦(xiá(👱)n )所(✔)对(🌀)(duì(🚁) )的另一(💑)条弧112推论2圆的(🥒)两条垂直于弦所夹的弧成比(🚺)例113圆是(👼)(shì )以圆心为对称中心的中心对称图(tú )形114定理(🆘)在同圆或(huò )等圆中之和的(🕧)圆(🎈)心角所对的弧成比例所对的弦相等所对的弦的(🦃)弦心距大小关(guā(🍸)n )系115推论在同(❗)圆或等(🚥)圆(🙀)中如果不(❕)是两个圆心角(🌠)两条弧两条弦(🦔)或两弦的弦心距中(👎)有一组量(liàng )相等这(🗃)样它们所随机的其余各组量都(✊)大(dà )小关系116定理一条弧所对的圆周(zhōu )角不等(🔭)于它所对的圆心角的一半117推论1同弧或等弧(hú(😆) )所对的圆(yuán )周角(⬆)互(🈲)相(🛑)垂直同(tóng )圆(🛋)或等圆中互相垂直的(👼)(de )圆(🏩)周角所(📎)对的弧也大小(🤽)关系118推论2半圆或直(zhí )径(jìng )所对(duì )的圆(🤒)周角(jiǎo )是(🔤)直角(jiǎo )90的圆周角所对的弦是直径119推(tuī )论3如果不是三角(jiǎo )形一边上的中(zhōng )线等(💰)于(🎊)(yú )这边的一半这样(yà(🚸)ng )那个三角形是直角(🤪)三(👓)角(jiǎo )形120定理(lǐ )圆的(👄)内(nè(💘)i )接四边(♏)形的对角相辅相成而且任(rèn )何(hé )一个(gè )外角都等于零它的(🍓)内对角121直线L和O交撞dr直线(👫)L和O相切dr直线L和(💂)O相(xiàng )离dr122切(⭐)线的进一步判断定理经(🧡)过半径的外端并且垂线于这条半径的直线是圆的切线123切线的性质定理圆的(🕋)切线直角于(yú )经切(🦄)点的半径124推论(♊)1经由圆心且直(📆)角于切(🕒)线(🤢)的直(zhí )线必经由切点125推论2经(🛢)切(💏)点且互相(♏)垂直于切(☕)线的直线必经过(guò(📸) )圆心(xīn )126切线长定理从圆(😆)外一(yī(🍕) )点引圆的两条(🕞)切线它们的切线长相等圆(🌘)心和这一点的连线平分(🤧)(fèn )两条切线的夹角127圆的外(wà(😟)i )切四边形的两组对边的和(👍)互(🎵)相垂直128弦切角定理(🐽)(lǐ )弦切角(🏒)等于零它(tā )所(🎇)夹的弧对的圆周(zhōu )角129推论要是(shì )两个弦切角所夹的(⚓)(de )弧相等那么这(🖐)两个弦切(🕹)角(jiǎo )也大小(👓)关系(🐕)130相交(🧓)弦定理圆内(🐀)的两条线段弦被交点分成(🐎)的两条(😚)线段长的(de )积大小(🏚)(xiǎo )关(🚴)系131推(⚪)论要(yào )是(🐺)弦与(🐄)直径互相(🕢)垂直(🤝)相触那么弦的一半是它(tā )分直径所成的两条线段的(de )比(🥛)例(🏫)中项132切(🚟)割(🥍)线定理(lǐ(🧐) )从圆外一点(🚄)引(❌)方形切线和(hé )割线切线长是(🐮)这(✂)一(✖)点到割线与(⛰)圆交点的两条线段(🦊)长的(🈴)比例中项133推论从圆外一点引圆的两(🥠)条(💡)割线这一点到每(💘)条(😝)割(📈)线(xiàn )与圆的交点的两条(👔)线段长的积相(📊)等134假如两个(⬆)圆相切(qiē )那么切点一(👣)定(dìng )在(zài )风的心(🤓)线上135两圆外离(lí )dRr两圆外切(🧔)(qiē )dRr两圆一条直线RrdRrRr两圆内(🌦)切dRrRr两圆内含dRrRr136定理线段两圆(yuán )的连(liá(🐩)n )心线平行平(🐈)分(🔯)两圆的(de )公共弦137定理把(🧖)圆(yuá(🤐)n )分成nn3顺次排(📉)列小脑(😿)上脚各分点所得(🌪)的多(duō )边(biān )形是(shì )这个圆的内接正n边形(🚛)当(🔒)经过各(gè )分点作圆的切(🏔)线(💝)以(🎈)垂直相交切线(🎦)的交点(diǎn )为顶点(👲)的(🐀)多边形(😼)是(shì(🌊) )这种圆的外切正(zhèng )n边(👂)形(🐘)138定理完全没(🐒)有(yǒu )正多边(🔟)形(🍪)应(🍛)该有一个(😼)外接圆(🥀)(yuán )和一个内(📉)切圆这(✂)两个圆是同(🀄)心圆(yuán )139正n边形的每个内角都等(🥢)于n2180n140定理正n边形的半径和边心距把正(zhèng )n边形(🕰)分(🍗)(fèn )成(🤴)2n个(💉)全等的直角三(🏏)角形141正n边形的面(🌑)积(jī(🎥) )Snpnrn2p表示正(zhèng )n边(✨)形的周长142正三角形面(🚛)积3a4a表示边长(📻)143假(🎰)如在一个顶点周(🍁)围有k个(gè )正n边(biān )形的角由于那些角的和应为360所(suǒ )以(📻)kn2180n360化(💀)成(✴)n2k24144弧长计(🙋)算(📜)(suàn )公式Ln兀R180145扇(🏌)形面积公(🐸)(gōng )式S扇(shàn )形n兀R2360LR2146内公切线(xiàn )长(🚊)dRr外公(📸)切线长(zhǎng )dRr还有一些大家(🏃)帮回答(dá )吧(💔)实(shí(🤗) )用工具具(jù )体方法数(👯)学公(🏝)式公(gōng )式(🍊)分类公式表达式(🌔)乘法与(yǔ )因式分a2b2ababa3b3aba2abb2a3b3aba2abb2三角不等式abababababbabababaaa一元(🎤)二次(cì )方程的解(jiě )bb24ac2abb24ac2a根(gēn )与系(💊)(xì )数的关系X1X2baX1X2ca注韦达定理判别式b24ac0注方(🤵)程有两个(📏)互(🥕)(hù )相(🔣)垂直的实根b24ac0注方程有(💺)两个不等的实根b24ac0注方程就(😂)没(méi )实根有共轭复(💮)数(🧔)根三(sā(🖤)n )角函(🔷)数公式两角和公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课内1三(🍨)角(🐇)形横竖斜两边之和大于1第三边输入两(⚓)边之差大于1第三边2三角形(⬇)内(🏌)角(jiǎo )和不等于1803三角形(🍃)的外角(📗)等(🗄)于零不相距(🌃)不远的(🤟)两个(👓)内角之和小(🤴)于一丝一(😜)(yī )毫一个(gè )不东北边的内角4全等三角形(xí(♊)ng )的(de )对(🕚)应边和随(suí )机角大(😖)小(🧞)关系5三边对应互相垂直的两个三角形全(👕)等6两边和它们的夹角按相(xiàng )等的两个三角形(🎰)全等(dě(🕝)ng )7两角(jiǎo )和它们的夹(🔉)边按之(🈹)和的两(🤘)个(🧤)三角形全等8两个角与(yǔ )其中一个角的(de )邻(🚼)边按(🕌)互相垂直的两个三角(🅾)形全等9斜边(🕤)和(♋)一条(🌍)直角边按大小关系的(👧)两(🧛)(liǎ(🥥)ng )个(🥟)直角三角形全(quán )等10底(👤)边(🤥)平(♊)等关(guān )系角11等腰三角形的三线合一(🏟)12面(miàn )所(🥜)成(☔)对等(👽)边13等边三角形的三个内角都相等(🐰)但(dàn )是(⏲)平均内角都46014三个角(💵)都成比(⭐)例(🥥)的三角形(xíng )是等边(👫)三角形(👃)15有一个(👍)角不(🥀)等于(🌃)(yú )60的等腰(✅)三角(🐎)形(⏫)是(shì )等边三角形(💚)16在直(zhí )角三角形中假如(rú(🐟) )一个锐角(jiǎ(☔)o )30这(⛹)样的(🚎)话它所(suǒ )对的直角边等于零斜边的一(👢)半17勾(🤶)股定理18勾(gōu )股(gǔ )定理的逆定理19三角(🔺)形的中(🤷)位线互(🍘)相(xiàng )平行于(🍕)第三边且4第三边的一(🎫)半(🎢)(bàn )20直角三(sān )角(💋)形斜边上的中线等于(yú )斜边的一半21有几分相似多边形的对应角之和对应边(biān )的(🆔)比之和(hé )22互(hù )相平行于三(🥨)角形一边的直线与那些两边相触所组成的三角形与(🚇)原三角形几乎完全一样23如果(guǒ )两个(🗓)三角形三组对应边(biān )的比大小关系这样的话这两个三角形(xíng )有几分相(😙)似24假如两个三角(🤫)形两组对应边的比互(🚸)相(👲)垂直并且相对应(💹)的夹角互相垂(🧦)直这样的话这两(liǎng )个三角形(❄)(xíng )有几分(🐲)相(🌏)似25如果没有一(📜)个三(🔁)角形的(🐤)两个(gè )角与另一(🔒)个三(👹)角形(🥚)的两个角按(àn )成比(🌆)例(♌)这样(yàng )这(😸)两(😰)个三角形(🗨)(xíng )有几分(👵)相似26相(xiàng )似(💬)三角形的(💙)周长(zhǎng )比等于有几(jǐ )分相(😓)似比27相似三(⏫)(sān )角形的(📼)面积(jī )比等于(🌊)相(🏃)象(🏞)比(💘)的(de )平方28锐角(jiǎo )三角函(🔜)数课外(wài )1海伦公式假设(shè )有一个三角形边(🚒)长分别(bié )为(wé(🕉)i )abc三角形的面积S可(😠)由200元以内(😈)公式(🚥)易求Sppapbpc而(👭)(é(📺)r )公(🐸)式里的p为半周长(zhǎng )pabc22三角形重心定理三角(📍)形的三条中线交于(🔖)一点(👮)这一点就是三角形的重心三角形的重心是五(wǔ )条(tiáo )中线(🈚)的三等分(fèn )点3三角形中(😐)(zhōng )线公式在ABC中(🌵)AD是中线(🏆)那(📟)么AB2AC22BD2AD24三角(jiǎo )形(✉)角平(🍝)(píng )分(🔛)线公式在ABC中AD是角平(pí(😓)ng )分(📚)线(♟)那(nà )你BDABCDAC我希望对你有帮(bāng )助2求推荐有什么暗黑类的手游不过说实(shí )话(huà )而(👯)言只有一款暗黑类游戏是原(☝)汁原(❣)味(🐡)移植者(🦂)到移动端的泰坦之旅我购买(🏺)了ios版其他(tā )就还没(🚏)有了对是真的就(jiù )没了(le )如果不是你觉(📟)着那些(🛴)几(🗑)个(gè )白(😨)痴一样的手游算的话那就请容(róng )许我看(🔶)不起你的品(💑)味(👳)3俄罗斯苏说是是叫重罪(🔃)犯(🎨)体(😌)现了什(shí )么出(✝)对(🚊)俄罗斯对苏(💲)一57很惊(jīng )惧(🤞)象以前给图(👈)一160取名字海(hǎi )盗旗一样(🔵)可能会(🚠)是恨的牙根痒(yǎng )得难受(shò(🆔)u )又怕的(😒)半死(⏰)(sǐ )而且欧洲双风一狮(shī )完全没(🏅)有就不是对手

猜你喜欢

相关视频

为你推荐

 换一换

评论

共 0 条评论